Archive for the 'Innovation' Category

As part of Women in Writing Week, we recognize one of the first female role models in the Navy: Rear Admiral Grace Hopper. Here she is on The David Letterman Show, at age 80:



JohnBoyd_PilotColonel John Boyd (USAF) developed a decision cycle concept called the OODA (Observe, Orient, Decide and Act) Loop. He applied the concept at the strategic level in military operations, but it can also be applied to our current and future warfighting efforts, what we design, build, budget for, and use in pursuit of our national objectives – today and in the future. If we consider Col. Boyd’s concept in relation to those warfighting efforts, then today we must begrudgingly admit that our adversary’s decision cycle operates more quickly than our own OODA Loop. Technology, particularly use of information technology systems (including the internet), has moved so quickly the past few decades that our enemies can design, steal or borrow new ideas for weapons or equipment, share information and quickly move out well in advance of our ability to counter those ideas. Yet we remain mired in the same processes used to design, build, budget and produce those items our military needs, more or less unchanged, since the 1960s.

Today to provide the warfighter a new weapon, ship, or airplane, we begin inside a bureaucratic process that requires an analysis of the gaps, alternatives, various capability documents, review upon review by a number of well-meaning organizations, etc… That is just to come to an agreement on what must go out to industry for their ideas, proposals and estimates. Items must be competed – sometimes even when it is already known what company can build to the need quickest and at the best price. And then there’s the funding question.

Creating a finished budget literally takes two years or more. Once the decision is made that we need to buy item X at price Y, it has to be put into the Department’s Budget. It takes almost a year for a service to build a budget, allow senior leaders the opportunity to review, debate and determine priority, and ultimately, decide if an item should be funded or not. Then begins the process of defending the service’s priorities starting inside the Pentagon and ending on Capitol Hill a year (or so) later. If approved inside the National Defense Authorization, and Defense Appropriation Acts (it is worth noting that today, a non-decisional Continuing Resolution is the norm), then we can finally spend money on a contract for a new warfighting capability. In summary, if we decide we need to produce a new, non-complex weapon, it takes a minimum of three or four years to actually deliver that weapon to the field.

We have begun to change – small but necessary steps, are being made. There is an Urgent Operational Needs process that allows the warfighter to quickly request a new capability, if the request meets certain policy criteria. A group of senior decision makers meets every two weeks to ensure urgent warfighter needs are being met as quickly as possible. They work together to push through the bureaucracy, even working outside the Department of Defense – with the Department of State and leadership on Capitol Hill. There have been successes. However, at the same time we make these small but important steps towards flexibility, we continue to struggle with new policy constraints or modifications to current requirements in existing systems.

If we are to remain the preeminent military force in the world we must continue to change. We must build a process that results in capability fielded quickly, vice capability fielded much slower – with minimal risk. Rather than have a series of consecutive leadership reviews on proposals (and the capability and/or funding required), each of which takes many months and can only move forward to the next step sequentially after each leader approves, we need to have single meetings of the right leaders to take in information, ask questions and make decisions – in a timely manner. We need the ability to spend money on new efforts today – not two years from now after we’ve built a budget, reviewed and defended it against any one of hundreds of reviewers who might disagree. We need flexibility to change programs as they move forward – when they hit a snag we must be able to quickly modify our plans, or if required – terminate our efforts and re-allocate the monies towards other needs. Naysayers will say a new process with speed in mind will lead to waste. The reality is that without a new process with speed in mind, we will fall further behind our growing number of challengers.

Do not misunderstand this to be a criticism of those that run or are involved in these current processes. Everyday there are tens of thousands of great Americans that work towards building the best and most capable Navy of the future. They toil under policies and laws currently in place and they do outstanding work. But we have to change the way we are doing the Navy’s business if we hope to continue to be the best. We have to tighten our own OODA Loop to decide and act far more quickly so that the enemy can’t get inside it, cannot work around it – or use our own process against us. Bottom line – we must change.



Women’s Equality Day is a commemoration of the passage of the 19th Amendment, granting universal women’s suffrage on this day 95 years ago.

Today is also the start of “Women in Writing” Week at the Blog. Many of the authors that follow, from now until September 2nd, are either first-time writers, new to the blogging world, or writing on issues they are passionate about.

The idea to have this week came after I culled through all of the blog posts here one day, to get a sense of where we were, where we are, and where we’re going. What Mary Ripley began inauspiciously nearly 7 years ago has blossomed into an online forum that continues the proud traditions of the Naval Institute.

Yet as I read post after post, one thing was missing: the voice of female authors. In more than 500 posts, fewer than 10 were written by active duty or reserve female officers, and none were written by enlisted females. According to CDR Salamander recently, perhaps this is because “they do not feel that their point of view…would be ‘politically acceptable,’ and from their perspective, the cost/benefit ratio just [does] not make it worth it.”

If this is so, let us make this place one where all can come and constructively contribute without retribution. And let us stand up for one another when that retribution attempts to rear its ugly head. As the same CDR wrote at USNI Blog’s humble beginning, “Creative friction is good. A questioning mindset is good. Diversity of thought is good….and a little moxie doesn’t hurt.”

The timing of this “Week” is fortuitous, too, as major “firsts” throughout the military have brought the issue of patriotic women serving their country to the forefront. The first enlisted women submariners are beginning their training, and will report to their boats next year. And of course, the first two women graduated from the Army’s prestigious Ranger School last week.

But as we move past these firsts, we must ask ourselves an important question: “When is ‘celebrating’ women not all that good for women?”

In an article published last week at the Washington Post, Gina Glanz remarks that, “Something tagged exclusively for or about women is all too often a revenue generating strategy alongside a way to deflect criticism about the lack of attention to women and an opportunity for the powers-that-be to say, ‘look what we do for women.’ Unfortunately, often, what they ‘do’ is not much.”

Glanz goes on to recommend that when women are asked to be singled out—or “siloed”—for being women, they should just say no.

And that was a strong sentiment as we stumped for articles for this week. Women’s issues are Navy issues; pay, benefits, uniforms, deployment schedules, meeting—and defining—standards, doing more with less – these are issues that we all grapple with. Knee-jerk categorization of some issues as “female” and some as “male” cheapens the contributions of all Sailors and Marines.

What will follow during this week is writing by both women and men on daily life in the Navy, role models and mentors, uniform policy, retention and leadership, command, innovation, and hope for the future. These are not male issues nor are they female issues. They are Navy issues.

Will this be USNI Blog’s only “Women in Writing” Week? Should it be? Perhaps.

Someone once spoke of a dream, where we consider all human beings equally based on the content of their hearts. Today, we must similarly strive to be a service where all who are willing are considered equally on the content of their performance and their character. This space exists for us to write about it, and to come together as both “writers” and “doers.”

CDR Salamander asks, “Do we want writers, or only writing that is within certain defined boundaries?” The legacy of the Naval Institute has been constructive writing and debate on any topic. Let the existence of this week—anathema to some—be a signal that we welcome all voices and we will, as a community, stand up for all those willing to speak. We welcome all women and men to contribute equally—and often!—to the Naval Institute Blog.



SpaceShipOne lands victoriously after a successful flight to space. Photo by Mike Massee. Courtesy of Scaled Composites, LLC.

SpaceShipOne lands victoriously after a successful flight to space. Photo by Mike Massee. Courtesy of Scaled Composites, LLC.

We are part of the CNO’s Rapid Innovation Cell, a group of junior personnel charged to bring rapid prototypes and emerging technology to the fleet. Part of the job is acting as agents for innovation, and as a result, we meet with organizations in the civilian world and government who are pushing boundaries, building new tools, and making the tech of tomorrow a reality today. When we visit new companies and organizations, we try to capture the principles and characteristics that make them effective.

On our most recent trip we visited Scaled Composites, a small aerospace engineering company based in Mojave, California that produces custom aircraft from concept to flight. Our key takeaway was that the company’s value proposition is built on a passion for aviation, and using bold materials and groundbreaking design engineering to overcome technical challenges. This has been the company’s passion since the beginning, resulting in a number of innovative projects, including winning the $10 million Ansari X-Prize in 2004 for a suborbital space flight in SpaceShipOne, the first privately built manned spacecraft. We liked that they do not limit themselves to traditional aircraft designs and construction techniques, as shown by one of their ongoing projects, the StratoLauncher. Designed to launch a payload into low earth orbit with more flexibility than traditional launch systems StratoLauncher will be the biggest airplane ever built.

From the beginning, it was clear that we were dealing with something different. We met the President of the company, Kevin Mickey, early on a workday, and most of us didn’t realize who we were talking to, until he passed out his business card and showed us a company overview slideshow with his title on it. The contrast to our own naval culture was readily apparent. There was no entourage, no aide or executive assistant hovering around to serve his every need, and he insisted on talking on a first name basis, making us feel completely at home.

After an hour-long discussion on the company, its mission and culture, and how they are pushing the limits of aircraft material and design, we toured the factory floor and saw their unique corporate culture in action. The company’s corporate values showed through, from Kevin knowing his employees by first name and greeting every one we passed, to the close working relationships and collaboration we saw between the shop workers and engineers. This was clearly a company that places its people first, in pursuit of solving big technical challenges.

Walking the floor and observing the manufacturing process, the group asked whether given the name, the company and its employees had a special passion for building with composites. Surprisingly, the answer was no. The materials used by Scaled Composites are actually conventional in the world of composite engineering. The company uses composites for the simple reason that building with them is the quickest pathway from design to flight, and allows rapid progress in short timelines.

Mojave is a desolate place. The town is dry, windswept, and has a population of fewer than 4,000. Scaled Composites attracts employees by giving them interesting problems to solve, and keeps them by continuing to challenge them with rewarding projects. Of the 550 employees in the company, over 60% are pilots themselves, and work on aircraft as a hobby. After building and fling aircraft all day, it is very common for employees to then go home and continue building and flying their own personal projects. Project teams are purpose-built around customer problems, and deliberately small and collaborative. There is a large amount of latitude for individual employees, based on a trust that they are trying their best to work for the company and to deliver a high quality product for the customer.

The company’s management exists to keep barriers away from the employees on the factory floor doing the actual work of the company, and serving the needs of its people, in order to put out a better product, more quickly. An interesting concept we discussed was the idea of the company being successful because of all the things it is not doing. This includes eliminating unnecessary process and oversight, preventing too much of an employee’s time from being spent in meetings, and undue reporting requirements to the corporate management. They quickly get rid of anything that gets in the way of employees designing and building aircraft.

In discussing oversight, questions of risk tolerance and failure came up. Kevin related that in building inventive aircraft and in providing latitude to engineers and floor workers, failure does occur. But what differentiates them from traditional development processes in, say, the government, is that they focus not on elimination of failure, but rather on ensuring they fail early in a project, and for the right reasons. An honest mistake is not punished, with the idea that an employee who makes a mistake for the right reasons is actually very unlikely to fail that way again. Negligence can’t be tolerated, but whole-scale risk aversion is toxic for a group. A key reminder for us was that if progress is going to be made, a healthy culture of risk tolerance is critical. At Scaled Composites, the atmosphere is anything but “zero defect.”

Overall, what lessons did we learn, and how can we in the Navy and Marine Corps apply them? This is an interesting question, since Scaled Composites is a for-profit company, with a mission of financial gain through deliverance of the best product it can. Meanwhile the military exists to win our nation’s wars, without a commercial profit motive. But there is one overriding commonality we observed: in both of these seemingly disparate missions, the people should come first. If you encourage a culture that questions boundaries, provides an intellectual challenge, is willing to reward boldness and even encourages failure in the pursuit of overcoming challenges, you attract and develop the kinds of people who dare to fail and drive outsized success when they win. This culture develops boldness, creativity and audacity that lead to considering more and bigger ideas, and cultivates people willing to try these ideas. As a result of this focus on people, Scaled Composites has been able to deliver a consistently high level of quality and breadth of products. For a military organization, a focus on people will result in enlisted and officers who aren’t afraid to act boldly and accept risk in accomplishing a mission. This will enable the capability and capacity to ensure we are building combat-ready forces in peacetime in order to win decisively in times of conflict.

In the military, we put our people first. Said another way, our people are the most important tool for winning wars, ideas are next, and the technology we use serves both. This is an oft-repeated paradigm, and while we aren’t perfect in following it, it has been proven true time and time again, throughout history. We must ensure we keep this focus. Wars are won by commanders with the vision and boldness to make hard decisions, and by Sailors, Airmen, Soldiers and Marines with the courage to carry those actions out. This paradigm is hardly unique to the military however, and we can learn much from people and organizations outside the DoD who share this commitment. In Scaled Composites, we saw just that. The company’s bold vision, failure tolerant and risk accepting culture attracts, and more importantly, develops and retains the type of employees who are comfortable with risk. Inculcated in a “dream big” culture, employees are encouraged to think boldly and pursue radical ideas. From this milieu of people and ideas, new technologies and airplanes are born, with many failures, but with enough successes that the company remains on the leading edge of the aeronautical field. The big successes that have put the company on the map, such as introducing manned spaceflight to the private market, are a testament to the philosophy of supporting and challenging their people. Scaled Composites is a model that is hard to ignore, and a valuable example to the Navy.



30th

VLS At-sea Reloading

July 2015

By

picture 1

Figure 1: The Donghaidao is the PLAN’s new MLP-like vessel

Last month, the People’s Liberation Army Navy held its first drill simulating the resupply of missiles in a combat environment. Live-fire exercises featured the firing of missiles and torpedoes, followed by maritime missile combat resupply[1]. In addition to developing advanced new anti-ship missiles, the PLAN has also commissioned a new maritime logistics vessel[2]. The PLAN is equipping its forces, and now rehearsing, for complex logistical coordination for sustained combat operations. At-sea replenishment of stores and fuel is routine for the United States. However, for all of its power projection capability, the Navy does not practice ordnance resupply. Given the increasing capabilities of the PLAN, and the imperative of Sea Basing, the US Navy must replenish this skillset.

Distributed Lethality calls for the surface fleet to go on the offensive.[3] Ships and Surface Action Groups (SAG) should operate forward, seize the initiative, confuse the adversary through battlespace complexity, and strike targets both at sea and ashore. But to carry out this strategy, surface ships face a critical limitation: munitions capacity. The primary weapons of large surface combatants like the ARLEIGH BURKE Class DDG and the TICONDEROGA Class Cruiser include the STANDARD missile, Tomahawk, Vertically Launched Anti-Submarine Rocket (VLA), and the Evolved Sea Sparrow Missile (ESSM). Those missiles are launched from the Vertical Launching System (VLS). Cruisers have 122 cells, Flight I and II DDGs have 90, and Flight IIA DDG have 96.

The specific quantities of each weapon loaded into VLS cells vary depending on mission and combat system configuration. Fully loaded, the large surface combatants pack quite a wallop, and are capable of destroying a broad array of aircraft, missiles, defended land targets and enemy warships. What they lack is magazine depth. 90 to 122 VLS cells is not enough. In the face of the sophisticated weapons that the PLAN has deployed to execute it anti-access strategy, one could easily conceive of scenarios where both the strike and defensive weapons’ cells on USN ships are quickly depleted. A day or two of combat operations may require several anti-aircraft weapons to be used against anti-ship cruise missiles and Tomahawks to be fired at targets ashore. After such operations, U.S. ships would have to travel hundreds, or possibly even thousands, of miles to a facility with weapons, equipment and people to re-arm. This takes our large surface combatants out of the fight for days, thus forcing the CSG and SAG to pull back, out of range of land-based opposing forces. That spells tactical victory for anti-access strategy.

Defeating the anti-access strategy may not require breaking into the defended bastion, destroying opposing forces, and commanding the seas right up to their shores. It could mean defending a regional status quo by preventing an anti-access actor from disrupting shipping, making claims on disputed territory, or invading another sovereign state. In many cases, the United States is the anti-access state. Today, credible military capability and capacity to impose localized sea control could make an aggressive violation of status quo undesirable[4]. Maintaining credible presence is a multi-faceted problem that touches everything: procurement, maintenance, manpower, and supply-chain. In order to counter these anti-access strategies, we must keep our major surface combatants on station with full combat capability through forward replenishment of weapons.

Unloading spent canisters, loading new weapons, and unloading weapons from damaged units will be critical to maintaining presence and keeping the pressure on adversaries in their anti-access bastions. Unfortunately, reloading VLS at-sea isn’t incorporated into the Navy’s logistical DNA in the same way refueling is. Reloading VLS cells in today’s status quo demands an industrially robust port facility with heavy equipment, trained rigging crews, and a large munitions storage facility. It is not uncommon to damage equipment, and people have been seriously injured during VLS loading and unloading evolutions. Experts at the Naval Weapons Stations and some Naval Support Facilities use cranes to unload spent canisters, move gas management system equipment, and place loaded canisters in cells. Can the Navy achieve similar results, sending ships back into action with fresh ammo, from more forward but less capable locations?

Figure 2USS FORD coming alongside USNS CARL BRASHEAR for RAS

Figure 2 USS FORD coming alongside USNS CARL BRASHEAR for RAS

To begin with, “at-sea reloading” is a misleading term. Swinging VLS canisters over the lifelines in comparable fashion to how it is accomplished at Seal Beach Weapons Station is not acceptable for Replenishment at Sea (RAS) at 13 knots. Since reloading during RAS is unachievable, I propose “forward” reloading, in a protected lagoon or calm harbor closer to the action. While out of the way locations may lack modern industrial equipment, many locations, with additional mobile support, could be used to reload magazines closer to the action.

A great deal of research and planning went into supporting supply chain management like this from 1897-1945, when Officers at Naval War College and OPNAV examined how to sail to victory against the Japanese Navy. Possible base locations were evaluated based on criteria such as ship capacity, number of entry passes, entry draft, and submarine protection to support operations in the Pacific Theater. Key requirements such as having a large lagoon and deep drafts were easily met.[5] The Navy may be able to use islands and atolls that failed to satisfy the early 20th Century requirements for forward operating for VLS reloading. Availability of numerous forward locations prevents bottlenecks, and reduces the vulnerability to enemy disruption. It is important to explore the feasibility of forward locations for VLS reloading. Crisis or time of war makes rapid munitions replenishment critical. A strategy that accepts greater risk will need to be employed. A pier that lacks every convenience except navigational draft, a calm anchorage, or even the lee of a volcanic formation far out at sea may be sufficient for VLS reloading. We should plan for using these feasible locations for VLS reloading before a crisis emerges.

Tomahawks, SM-3 and SM-6 missile canisters are over 20 feet long, weigh thousands of pounds, and are filled with fuel and explosives. They’re hard to pick up, and you certainly can’t risk dropping them. What will ships need to do to execute a transfer away from the robust facilities that normally conduct these operations?

Cruisers and Flight I and II Destroyers previously used a VLS strike-down crane that occupied space for 3 VLS cells. These had been certified to reload SM-2 missiles and Vertically Launched Anti-Submarine Rockets (VLA). Maintenance burden and crew training requirements, combined with the inability to reload some of the larger weapons in the inventory, led to the strike-down crane’s exclusion from Flight IIA Destroyers. The cranes have since been permanently laid up or completely removed from VLS systems.[i] Simply replacing those cranes is not a solution since they would require extensive redesign and engineering to load Tomahawk, SM-3, and SM-6 missiles. Rather than adding equipment to the CG and DDGs, the Navy could explore options to deliver the necessary equipment to the ship in conjunction with the missile transfer.

The size of the missiles and the distances replenishing units must cover preclude airborne delivery. The existing fleet of replenishment ships is a natural options for VLS rearming. For instance, The Mobile Landing Platform (MLP) has an open deck with ample room for containers and handling gear. Combined with low freeboard, and excellent low-speed maneuvering characteristics, it appears to be a useful platform for skin-to-skin mooring and weapons transfer. The MLP lacks dedicated magazine space and ordnance handling equipment, so development of ordnance storage containers and associated safety equipment would be necessary.

The T-AKE dry cargo and ammunition ship has ample ordnance storage capacity, however a high freeboard and large midship superstructure increases the risk of damaging mast electronics on the receiving ship during transfer operations. Moreover, though the T-AKE does have a crane, neither it nor the receiving ship has a crane capable of safely swinging VLS canisters across to set into VLS cells.

VLS reloading in sea states 1-2 is a critical requirement. During a routine RAS evolution, relative motion can exceed several feet, but during VLS reloading, the relative motion between delivery and receiving ships cannot exceed 6 inches. It will be necessary to maintain complete control of the missiles during transfer, not simply gauge the motion and use judgment to set it into place safely. Current research indicates that a specialized crane with a stabilizing system would be the best way to not only transfer missiles from one ship to the other, but to prepare the cells for ordnance. A crane with a stabilization system is the only way to ensure gas management equipment can be safely and securely placed, and that damage to cell openings and door mechanisms can be avoided while inserting loaded missile canisters into VLS cells.

While the stabilized crane helps, the best way to ensure the weapons are safely lowered into place is with a positive-control system, secured to the ship. Navies that operate the MK 41 system have experimented with developmental systems to perform this task. Prior to lifting canisters, the delivering ship would hoist a loading device and set it atop the launcher. This device would be used to pull canisters up from the cells, then lay them flat, parallel to the deck. The missiles would be secured to the crane and released from the loading device for transfer to the replenishment ship. Then, replacement missiles would be craned back to the CG or DDG, secured in place on the loading mechanism, then raised vertically for loading into the VLS.

The use of a stabilized crane and secure loading system would ensure the careful control and transfer of missiles between ships, and is essential for VLS reloading in forward areas.

A final key consideration for VLS reloading that could consume another paper by itself is ensuring enough ordnance is on hand to support ongoing operations. Requirements emerge from data models, and missiles are procured and maintained based on assumptions of potential combat regions and the threats that could be encountered there. As a conflict evolves, ships will request the missiles they need based on their combat usage, or the missions to which they’ll next be assigned. Careful tracking of what is being fired and what is being reloaded will be necessary to ensure Combatant Commanders know their inventories so that they may transfer ordnance or ships from one region to another to support combat requirements.

The speed that ordnance information must travel will increase dramatically relative to the current peacetime information deliver rate. Exercises and war gaming of these scenarios will undoubtedly prepare for the people and ordnance tracking systems for wartime speed and complexity. Weapons stations will be issuing weapons to replenishment ships, DDGs and CGs will be demanding reload, damaged vessels will need to transfer weapons to combat ready ships, and the entire system must be tuned to put the right missiles on the right ships and in the correct cells. In total, it will be a fast-paced, hectic process likely involving significant improvisation. Keeping count, maintaining order, and reloading VLS cells must be practiced, and there is more to the weapons supply chain than just cranes and rigging gear. The difference between the right munitions at the right time and a miscalculation or misplacement could be a crew watching the screen helplessly for a couple of terrifying minutes until an anti-ship missile reaches CIWS range because STANDARD missiles were not available for reload.

Forward VLS reloading: It can be done

Technologies to facilitate forward reloading of VLS are mature, but the Navy has no stated requirement for integration, testing, and certification of specific equipment needed to support it. Funding for further development of the at-sea (or forward) reloading capability will be a hard sell in the current budget environment, and because the current peacetime status quo is satisfactory.

The proliferation of guided anti-ship weapons, and the rise of PLAN anti-access strategy have driven the US Surface Navy to adopt a Distributed Lethality mindset. To keep more warships on station for as long as possible, losing a DDG in the midst of combat to conduct a multi-day transit just for rearming is not acceptable. To paraphrase Eisenhower: plans are worthless, but planning is everything. Funding for final implementation of forward reloading systems may not seem worth the expense today, but it is critical to supporting Distributed Lethality warfighting. Forward reloading of VLS cells is a technical, operational, and supply chain challenge, and it must remain a priority for research & development, war gaming, and strategic planning processes for it to ever be employed successfully in wartime.

[1] Ben Blanchard, “China Navy Holds First Missile Combat Resupply Drill,” Reuters, July 2, 2015, http://www.reuters.com/article/2015/07/02/us-china-defence-drill-idUSKCN0PC19H20150702

[2] Mike Yeo, “China Commissions First MLP-Like Logistics Ship, Headed for South Sea Fleet” USNI News, July 14, 2015, http://news.usni.org/2015/07/14/chinas-commissions-first-mlp-like-logistics-ship-headed-for-south-sea-fleet

[3] Vice Admiral Thomas Rowden, Rear Admiral Peter Gumataotao, Rear Admiral Peter Fanta, “Distributed Lethality,” United States Naval Institute Proceedings (1/2015), http://www.usni.org/magazines/proceedings/2015-01/distributed-lethality

[4] Rowden, Gumataotao, and Fanta.

[5] Miller, Edward S. War Plan Orange: The U.S. Strategy to Defeat Japan, 1897-1945. Naval Institute Press, 1991.

[i] Before decrying the removal of the knuckle crane for criminal shortsightedness, consider the implications of keeping those cranes in place. Cranes, like pallet conveyers and elevators, require considerable effort for upkeep. They also require manning consideration to include operation and maintenance classroom training for sailors, not to mention repetition of use to ensure that crews keep perishable skills sharp. It’s also ordnance handling equipment, which involves another level of inspections and certification. These are matters of personnel safety, where errors can cost lives. We can’t simply ditch the inspections and certifications of gear and the training and qualification of people because they sound like extra red tape. Rules that govern the operation and upkeep of these systems are written in blood. Occasionally, we are reminded that life at sea is dangerous, and we do not like to be reminded in peace time. Pile that onto manpower reductions, in-rate and professional training, and watch standing, and you may notice that sailors on afloat units are busy. In an era of fiscal austerity and manpower reduction, maintaining expensive gear and skills fell off the table. Something had to lose. This lost.

 



Much was made this week of the North Dakota employing a submarine launched drone (here, herehere , etc). Yes, “underwater DRONES[!!!]” as the Daily Mail exclaimed.

OK, great, what does that mean though? What value are we adding to a boat? Well, the North Dakota employed a REMUS 600, which is an autonomous underwater vehicle capable of achieving depths of over 4,900ft, speeds up to 4kts, and a battery life of up to 24 hours. It’s a little over 10ft long with an inertial navigation system and a lithium battery powering it all.

REMUS UUVSo what could you possibly do with this thing? How about finding the resting place for a WWII TBF Avenger and her crew? Here, a team from the Bent Prop Project and the Scripps Institution of Oceanography used a REMUS with an add-on side-scan sonar to localize a crash site and find the plane and her crew. Around 6:00 you can catch the REMUS in action.

I know we’re still rolling out Virginia class boats, but it’s not hard to envision the future SSNs acting as a mothership for drones.

Naval warfare, at the lowest level, revolves around destroying something before it can destroy you (an observation more akin to an utterance of John Madden than Sun Tzu, I know). So as result, we talk about warfare a lot in terms of ranges. How close can I get before something detects me? How far away can I detect it? At what range can I shoot it? When can it shoot me? The race to shoot the furthest led to the development of weapons systems (Phoenix air-to-air missile and Trident missile) before we built the platform to shoot it.

And while we often describe the range of a nuclear-powered submarine as unlimited, that doesn’t mean we can go just anywhere in the ocean. We’re constrained by water depths, and the minimum operating depth of a small, submarine-launched unmanned underwater vehicle (UUV/drones) would likely be shallower than the launching platform.

We’re expanding the area of where a submarine can make life miserable for the enemy. Check out that video again. Do you think we could put a submarine there to accomplish that task? We’ve now demonstrated that a submarine launched drone might able to access that territory. That’s why we should be excited about “DRONES.”



The following essay was submitted to the 2015 Capstone Essay Contest by MIDN (now ENS) Steven Hallgren and is published as submitted. This is the first of several essay contest submissions that will be published in the coming weeks.

carrierOn September 25th, 2011 in the Northeastern port city of Dalian, the Chinese People’s Liberation Army Navy (PLAN) brought the newly-refurbished aircraft carrier Liaoning into service.[1] The commissioning came as the result of a decades-long endeavor to acquire such a ship, and perhaps more importantly represented China’s ambitions to establish blue-water naval capabilities. Though the Liaoning itself will only serve as a test bed for Chinese carrier aviation and ostensibly will never see operational service, it nevertheless shows progress towards China’s ultimate goal of bolstering its fleet with home-built carriers.[2] A PLAN fleet with power-projecting aircraft carriers would profoundly expand China’s naval capabilities in the hotly-contested waters of Southeast Asia. As the initial sea trials of Liaoning usher in the age of the Chinese carrier fleet, it is worth examining how the PLAN would employ such assets within its greater maritime strategy.

From a broad perspective, China’s quest for a carrier fleet is a manifestation of its need to defend its territorial claims from foreign threats in much the same way that it had to defend its tremendous landmass from continental threats throughout history. More concrete ideology launched a fervent pursuit of an aircraft carrier dating back to the 1980’s when Soviet-trained Admiral Liu Huaqing began shaping China’s maritime direction.[3] Increasing strain across the Taiwan Strait primarily fueled what he described as the “extremely necessary” urge to manifest China’s maritime—and, ergo, national—power in the form of a carrier.[4] Since the 2000s, waning tensions with Taiwan have shifted China’s maritime focus towards new areas—though the pursuit of a carrier has remained constant.

Liaoning began her peculiar life as Varyag, intended to be an aircraft carrier of the Soviet Navy. Her construction halted with the dissolution of the Soviet Union in the early 1990’s, and Varyag was left incomplete to rust in a Ukrainian shipyard until the Chinese purchased the empty hull in 2000. After an elaborate trek out of the Mediterranean and around the world to Dalian, Varyag entered a decade-long refit period, culminating in her renaming and commissioning as Liaoning.[5]

As with many aspects of its military, the PLAN is far from forthcoming with the features and capabilities of its infant carrier. However, its expected specifications can be approximated based on the small amount of information China has released and the Soviet Admiral Kuznetzov class to which Varyag belonged. The carrier will host a modestly-sized air wing totaling around 50 aircraft, divided between J-10 and J-15 fighters and an assortment of helicopters used for anti-electronic warfare (AEW) and anti-submarine warfare (ASW).[6] Additionally, Liaoning’s ship-board weapons include a CIWS defense system, air-defense missiles, and ASW offensive missiles.[7]

In analyzing the impact of carrier developments on the PLAN fleet, care must be taken to avoid falling into the trap of directly comparing Chinese capabilities to those of the American Navy. As a result of this practice, many analysts tend to be overly dismissive of the carrier. [8] While by any measure the Nimitz class aircraft carriers objectively outperform Liaoning, such comparisons are only illuminating insofar as the two ships would be expected to meet each other in combat. Direct naval combat with the American Navy is not only substantially unlikely, but also entirely beyond the strategic maritime scope of the PLAN.[9]

Further, even assuming the current state of Liaoning to be the effective extent of the Chinese carrier program is rather short-sighted. As mentioned previously, the PLAN does not even intend for Liaoning to become an operational ship. That being said, it serves as a useful proxy for future carrier development as it not only will become a “modestly capable” ship in its own right, but will also serve to train the PLAN in the tactics and employment of such an asset.[10] As such, although direct contrast with the more familiar and transparent capabilities of Western navies is simple, a more useful analysis is achieved through a localized assessment of the impact of a PLAN-operated carrier strike group in the Western Pacific. After all, Asian waters currently host a power vacuum waiting to be filled by the first Asian nation with a fully-operational carrier.[11]

Having broadly established the current state of China’s carrier program, the question then becomes how a fleet with operational aircraft carriers would change China’s ability to achieve its strategic maritime objectives. Naturally, the strategy of the Chinese military is every bit as wide-sweeping and nuanced as that of any other major power. Even still, it is possible to observe recurring themes within those plans, isolate the capabilities needed to achieve them, and analyze the extent to which a carrier navy would bolster those capabilities. From a regional security perspective, perhaps two of the most important strategic objectives are China’s desires to establish a broad territorial claim over the South China Sea and to define itself as a major power of the Western Pacific.[12]

China continues to assert ambiguous and expansive territorial authority over the islands and waters of the South China Sea. Its claims have engendered considerable regional maritime disputes over the status of small islands, reefs, and even rocks that now define foreign relations in the Western Pacific. China’s maritime neighbors and several members of the international community continually contest China’s state position to prevent it from becoming legitimized.[13] One of the primary means by which China strengthens its position in such disputes is through its own maritime patrols conducted by the PLAN.[14] Such patrols aim to simultaneously use military force to assert control over the region while also effectively deterring its Pacific neighbors from doing the same. Analysts typically categorize such operations as anti-access/area denial (A2/AD), which describes the general maritime strategy of restricting competitive access to a region.

Ultimately, A2AD campaigns and the defense of territorial claims fundamentally cannot be supported entirely from shore. As a case study, consider the Johnson South Reef Skirmish fought between China and Vietnam in 1988. The Spratly Islands are just one of the numerous contested territories that China lays claim to. These islands, located over 1,000 nautical miles from the Chinese mainland, are also claimed by Vietnam, among other parties in the region.[15] When a skirmish broke out between the two nations, the Chinese faced unexpected difficulties countering attacks on their fleet by Vietnamese aircraft.

During the conflict, Chinese aircraft had to operate from a distant Chinese-controlled airfield. The transit time from the base to the area of operation was so long that the aircraft were left with only four to five minutes of time on station, dramatically limiting their effectiveness against their Vietnamese adversaries. Admiral Chen Weiwen, a commander during the battle, noted later that “if…we had our own [air] cover from a nearby aircraft carrier, we would simply not have had to fear Vietnam’s air force.”[16] Land-based assets play a critical role in their own time and place, but that place is frankly not in rapidly changing, forward operating areas.

Aircraft carriers are occasionally caricatured as being “several thousand tons of diplomacy,” but the aphorism does hold weight. In the Spratly scenario as with the rest of China’s maritime claims, no act of diplomacy or demonstration of force can compare to moving an aircraft carrier on station. For one, even the mere presence of a carrier would be a deterrent against further escalation, as the resource allocation would demonstrate China’s commitment to the claim. Moreover, the capabilities the carrier brings would be better able to respond to emergent threats than perhaps any other tool in the Chinese arsenal. This combination makes the aircraft carrier virtually indispensable for the preservation of maritime claims. In fact, the United States routinely employs its carriers for this exact purpose, as demonstrated by the stationing of the USS Nimitz and USS Independence off the coast of Taiwan during the height of cross-strait tensions in the mid-90s.[17]

Simultaneously, China has shown interest in becoming the leading nation in the region beyond merely maintaining territorial control. The PLAN has noticeably shifted its development efforts towards acquiring naval capabilities beyond mere defense and offense, to include the mission sets of counterpiracy and humanitarian assistance/disaster relief (HADR).[18] Such military operations other than war (MOOTW) on behalf of the international community require the foundational capabilities of forward presence and power projection coupled with the platforms and equipment necessary to carry out such tasking.

Accordingly, the utility of aircraft carriers extends far beyond strictly military endeavors. For the same reasons that they are vital to power projecting operations, carriers can also play an instrumental role in virtually any military staging operation far from home. China will almost certainly employ carriers to expand its gradually growing peacekeeping and HADR mission set. Recently, the PLAN has only just begun to dip its toes into these waters. Since 2008, the PLAN has continuously participated in counter-piracy operations in the Gulf of Aden, marking its first foray into conducting open-water MOOTWs.[19]

Such operations ultimately are diplomatic tools used to not only strengthen China’s reputation in the international community, but also to establish China as a major regional power. While counter-piracy operations can be effectively conducted with a frigate- and destroyer-based fleet such as China currently has, the addition of aircraft carriers into its arsenal opens up substantially more potential MOOTWs.

Consider again an example from the United States. In 2011 after Japan was rocked by an earthquake and tsunami, the United States started Operation Tomodachi to provide HADR support to the region. USS Ronald Reagan served as the centerpiece of naval resources and manpower during this operation and coordinated rescue efforts for nearly one month off the coast of Japan.[20] Arguably only an aircraft carrier could offer the combination of endurance, flexibility, and capability required for such a long-term coordinated effort. A PLAN equipped with an aircraft carrier and a healthy complement of rotary wing assets would be capable of conducting similar HADR operations in the South China Sea. The regular completion of such operations would indisputably mark China as a dominant power in the region, and may even fundamentally alter the perceptions Southeast Asian nations have towards China.

Possessing an aircraft carrier is a tremendously potent tool of diplomacy in a way comparable perhaps only to developing nuclear weapons. Though the PLAN’s carrier program is by all accounts still in its infancy, it is maturing rapidly. As initial carrier training is conducted on board Liaoning, reports indicate that work has already begun on China’s first home-built carrier.[21] The reality of a Chinese carrier fleet is no longer a question of “if” so much as “when.” Whether that fleet would pose a legitimate threat to a US carrier strike group is immaterial. A PLAN with carriers will irreparably alter the nature of Southeast Asian relations and indeed the face that China presents to the world.

 

[1]. Ananth Krishnan, “China Commissions First Aircraft Carrier Liaoning,” The Hindu, 26 September 2012, http://www.thehindu.com/news/international/

china-commissions-first-aircraft-carrier-liaoning/article3935971.ece.

[2]. Stew Magnuson, “China’s Navy Takes Great Leap Forward,” National Defense Industrial Association, April 2014, http://www.nationaldefensemagazine.org/archive/2014/

April/Pages/China%E2%80%99sNavyTakesGreatLeapForward.aspx.

[3]. Captain Bernard D. Cole, USN, “Drawing Lines at Sea,” U.S. Naval Institute Proceedings, vol. 137, no. 11 (November 2011), 48-51

[4]. Ian Storey and You Ji, “China’s Aircraft Carrier Ambitions,” Naval War College Review, Vol. 57, no. 1 (Winter 2004), 76-93.

[5]. Captain Bernard D. Cole, USN, “China’s Carrier: The Basics,” U.S. Naval Institute News, 27 November 2012, http://news.usni.org/2012/11/27/chinas-carrier-basics.

[6]. “Liaoning (Varyag) Aircraft Carrier, China,” Naval Technology, http://www.naval-technology.com/projects/varyag-aircraft-carrier-china/

[7]. Ibid.

[8] See, for instance, James R. Holmes, “Top 5 Reasons Not to Ballyhoo China’s Carrier,” The Diplomat, 2 October 2012, http://thediplomat.com/2012/10/top-5-reasons-not-to-ballyhoo-chinas-carrier/.

[9]. Bryan McGrath and Seth Cropsey, “The Real Reason China Wants Aircraft Carriers,” Real Clear Defense, 16 April 2014, http://www.realcleardefense.com/articles/2014/04/16/

the_real_reason_china_wants_aircraft_carriers.html.

[10]. Andrew S. Erickson et al., “Beijing’s ‘Starter Carrier’ and Future Steps,” Naval War College Review, vol. 65, no. 1 (Winter 2012), 15-54.

[11]. Donald Kirk, “Asian Aircraft Carrier Race—China Vs. India Vs. Japan,” Forbes Magazine, 13 August 2013, http://www.forbes.com/sites/donaldkirk/2013/08/13/aircraft-carriers-first-chinathen-india-and-japan-all-want-one/

[12]. Vice Admiral R.N. Ganesh, Indian Navy, “Maritime Ambitions of China”, Indian Defense Review, 19 February 2013, http://www.indiandefencereview.com/news/

maritime-ambitions-of-china/0/.

[13]. Kevin Baumert and Brian Melchior, “Maritime Claims in the South China Sea,” Office of Ocean and Polar Affairs, U.S. Department of State, 5 December 2014, http://www.state.gov/

documents/organization/234936.pdf.

[14]. Peter Dutton, “Three Disputes and Three Objectives: China and the South China Sea,” Naval War College Review, vol. 64, no. 4 (Autumn 2011), 42-67.

[15]. “China’s Activities in Southeast Asia and the Implications for U.S. Interests,” United States-China Economic and Security Review Commission, 4 February 2010, http://origin.www.uscc.gov/sites/default/files/transcripts/2.4.10HearingTranscript.pdf.

[16]. Andrew Erickson and Gabe Collins, “Introducing the Liaoning: China’s New Aircraft Carrier and What it Means,” The Wall Street Journal, 25 September 2012, http://blogs.wsj.com/

chinarealtime/2012/09/25/introducing-the-liaoning-chinas-new-aircraft-carrier-and-what-it-means/.

[17]. Chun W. Chiang, “Crisis Management in the Taiwan Strait,” U.S. Army War College, 7 April 2003, handle.dtic.mil/100.2/ADA415086

[18]. Ronald O’Rourke, “China Naval Modernization: Implications for U.S. Naval Capabilities – Background and Issues for Congress,” Congressional Research Service, 23 December 2014, http://fas.org/sgp/crs/row/RL33153.pdf.

[19]. Zhou Bo, “Counter-piracy in the Gulf of Aden: Implications for PLA Navy,” China-United States Exchange Foundation, 30 December 2013, http://www.chinausfocus.com/

peace-security/counter-piracy-in-the-gulf-of-aden-implications-for-pla-navy/

[20]. Ryan Zielonka et al., “Chronology of Operation Tomodachi,” The National Bureau of Asian Research, http://www.nbr.org/research/activity.aspx?id=121

[21]. Charles Clover, “China Media Confirm Second Aircraft Carrier,” Financial Times, 10 March 2015, http://www.ft.com/intl/cms/s/0/0339399a-c6f7-11e4-9e34-00144feab7de.html



Serious students of the US national security enterprise are likely familiar with Dr. Amy Zegart’s Flawed by Design. In her 2000 work, she examines the creation of the Joint Chiefs of Staff, Central Intelligence Agency and the National Security Council, concluding that from the start, these organizations never received the appropriate authorities to effectively lead, to ensure our nation’s security and fight our nation’s wars. Her insights proved prescient in light of the 9/11 attacks and military operations in Afghanistan and Iraq.

A4_AFPS_Dempsey_wSince the National Security Act created the DoD, JCS, CIA and the Department of the Air Force in 1947, there have been repeated attempts to build using this broken design. Each subsequent reform effort, particularly the Goldwater-Nichols Department of Defense Reform Act of 1986, added to the size and complexity of the Pentagon. Layers upon layers of oversight got added to fix and re-fix the fundamentally flawed concept. The total cost to maintain this leviathan of tens of thousands of staff is enormous and takes scarce resources away from actual warfighting needs. Significant overhead costs are not the only negative impact from this flawed design, as many DoD-wide efforts are simply not effective.

In a recent speech at the American Enterprise Institute, Secretary of the Navy, Ray Mabus provided examples of the DoD’s “4th Estate” dysfunctionality. He particularly focused on the growth and operating costs of the Defense Finance and Accounting Services and the Defense Logistics Agency but similar criticisms could be made against most defense organizations.

These organizations were created to efficiently provide common support functions for the military services but, over time, that concept seems to have been lost, as the size and roles of the defense establishment expanded. Today, the military services often have to change their practices to support the defense agencies, instead of the reverse.

Similar to Mr. Mabus’s criticism of the 4th Estate, Senator John McCain has been a vocal critic recently of the Defense Acquisition System and has even called for revisiting the sacred cow of Goldwater-Nichols. Sweeping changes to these two broken processes are long overdue.

While the shared interests of Secretary Mabus and Senator McCain are somewhat unusual, some may view them simply as inside-the-beltway political banter. However, DoD’s outdated organizational structure has also hampered military operations over the past decade.

My experience highlights the broad impacts from centralized oversight. Having served in both the Navy and Marine Corps for over a decade apiece, I understand naval integration is difficult to achieve; even after 200 years, it is still a work in progress. To think that four services can fully integrate to support the shared-lie of “jointness,” to confront and solve fast-evolving crises today, is an expensive fool’s errand.

General Stanley McChrystal asserts in his new book Team of Teams, that the “Limiting Factor” in our war against al Qaida was our own management of operations. He experienced first-hand the cumbersome layers of bureaucracy, siloed information sharing and over-centralized decision making, even within his own Special Operations community. My own experience at the MNC-I HQ in 2005 supports his assertions and has made me question the value of joint organizations and processes as well.

Many are familiar with the US Army’s seizure of the Baghdad International Airport (BIAP) in the initial run-up to Baghdad in 2003. There was a second, lesser known, battle for BIAP in 2005 – which pitted Marines against the Air Force.

Briefly, the Marines operated in the areas west and south of Baghdad and routinely conducted counter-fire missions through a section of the air space on the same side of BIAP. The Air Force staff at the Combined Air Operations Center wanted to expand the air space control measures above BIAP for safety of flight concerns. This change would prohibit Marines from quickly responding to attacks on ground forces—shooting back, in other words–in the area.

Despite Joint doctrine clearly favoring the ground commander, a joint staff running operations, and even having a neutral Army three star as the Corps Commander, the Air Force refused to support the ground commander’s operational needs. Eventually, a few mid-level officers and Staff NCOs worked out a solution, albeit one held together with duct tape and 550 cord, that resolved the coordination issue.

This event occurred nearly 20 years after the passage of Goldwater-Nichols and following significant investments in joint commands, joint doctrine, joint programs and the brainwashing of an entire generation of military officers on the virtues of jointness. Interservice coordination seemed no better than it was in previous military operations. Problems in Iraq were resolved by military professionals working towards common goals, as I’m sure was the practice in every war before the flawed legislation.

For the past 60 years, DoD and Congress have slowly worked towards unification of the military services. In the industrial age, centralization and the emphasis on process efficiency were widely accepted management practices. However, the complex, interconnected future, characterized by ubiquitous data and technological changes occurring rapidly, will require smaller, decentralized and agile organizations to succeed – just the opposite of our current organization design.

Not only is the idea of creating enormous Defense-wide systems, programs and organizations a bad one, it is a dangerous management approach in the information age. The recent OPM data breaches provide crystal-clear evidence of how catastrophic risk increases when we put our all of our eggs in a single basket. We cannot wall-off our stovepipes in single places and rest assured that no one can get in to our information.

Preparing for future conflict, particularly against modern professional militaries, requires more than simply investing in expensive weapon systems. It requires us to have candid conversations about what’s not working in DoD – far beyond just the broken acquisition process – and recognize the fundamental design flaws of the Department.

Over the next few years, we have a great opportunity to leverage the work started by Secretary Mabus and Senator McCain. With former naval officers Undersecretary Bob Work and General Dunford holding key positions in the 4th Estate, as well as a new Commandant and CNO both recognized for innovating thinking, and several naval officers on the Hill, we may actually be able to make some meaningful changes in the defense organization which will ensure success in the future. Making significant changes to the entrenched DoD bureaucracy are a longshot indeed, but history has shown that naval officers working together are capable of great things.



2015-02-15-ALASAConceptImage2From hapless Norwegian coastal battleships in WWII to last decade’s unarmored HUMVEEs, there are things that look good on paper and are highly functional for a nation at peace, that in hindsight do not seem all that great once an enemy gets a crack at them.

There are a few reliable constants to war at; one is that the things you rely on the most, your critical vulnerabilities identified by the enemy will always be targeted first.

A competent commander is self-aware of his own critical vulnerabilities, and makes a reasonable effort to protect them. Understanding the chaotic and dynamic nature of war, no critical vulnerability can be fully protected and needs backups – you need redundancy, especially if you have a critical requirement that is also one of your critical vulnerabilities.

For so long we have assumed access to the electromagnetic spectrum as a given, and access to satellites – those gloriously exquisite linchpins of the modern navy – as a given, then perhaps we should consider how we can provide Carrier Strike Group Commanders and Maritime Component Commanders the ability to replace wartime losses and complicate the enemies targeting our satellites.

Satellite constellations set up in peace are the fixed coastal defenses of the modern age – easy to target and plan against – and most likely first on an enemy’s targeting priority list.

What if a local commander could re-establish capabilities or even create new ones using those units under his command, at his discretion?

What if that capability wasn’t just an idea, but close to making a shadow on a ramp? This is something I pondered while reading about DARPA’s Airborne Launch Assist Space Access program, or (ALASA);

If all goes according to plan, a series of 12 orbital flights would then commence in early 2016 and wrap up by the middle of the year, DARPA officials said.

“The plan right now is, we have 12 [orbital] launches. The first three are fundamentally engineering checkout payloads,” Bradford Tousley, director of DARPA’s Tactical Technology Office, said Feb. 5 during a presentation at the Federal Aviation Administration’s Commercial Space Transportation Conference in Washington, D.C. “The other nine will be various scientific and research development payloads that we’re after.”

The ALASA military space project consists of an F-15 fighter jet carrying an expendable launch vehicle underneath it. Once the F-15 gets up to a sufficient altitude, the rocket releases and ignites, carrying its payload to orbit. The F-15 would then return to Earth for a runway landing, after which it would be prepped for another mission.

Perhaps we are at the point that it is still too big for anything smaller than an F-15E … but … put the engineers on it. Platform or payload, one of them should be able to be modified at a reasonable cost.

Additional satellite communications, ISR, etc – all just a magazine elevator away. Ponder it a bit.

In war, few things are better than for your opponent to think you are blind and helpless and then they move in for the what they think is the quick and easy victory … or that they think that is what you want them to do … but if you don’t have that capability then, well … you don’t. You miss an opportunity to deceive your enemy, or to sow doubt and confusion in the mind of their commander – two things anyone would like to have in their quiver.

… and no, “Call the USAF and have them do it for you from CONUS.” is not the correct answer. To call the USAF from WESTPAC, you need … ahem … satellites – or still have low-baud HF TTY. Oh, and … well … priorities.

Ahem.



Recent articles such as this one by James Holmes (also covered by Sal) and this Proceedings article by ENS Daniel Stefanus have leveled some very specific criticisms against the industrial architecture which supports our Navy. Holmes writes of the past generations of Sailors:

[They] were expected to make themselves as self-sufficient as possible... Big ships outfitted with machine shops, welding facilities, and the like could help out in a pinch, fashioning spares not stocked on board.

Meanwhile, Stefanus points out other erosion in self-sufficiency in his criticism in the use of contractors to fix things:

If a cruiser’s SPQ-9B radar suddenly goes down in the middle of an engagement, there is no time to fly out a contractor. Only the ship’s crew can salvage the situation… An overreliance on contractors only diminishes this capability.

How did we arrive here? It has its roots in what we do want our Sailors to look like and be capable of–and we have wanted them to act more as operators and less as technicians. This is apparent when we look at trends in submarine enlisted rates. For us, interior communications electricians, radiomen, and quartermasters have all been folded into the same rating: electronics technician. We no longer sub-specialize Sailors in radio division into operating/maintaining either our radio equipment or our electronic warfare stuff–they do both now. We haven’t generalized these ratings because we have less complicated gear onboard or because they had skills we didn’t want anymore. As Stefanus and Holmes pointed out, we’ve simply ceded these skills to shore support. Once we transform a workforce into operators vice technicians, it makes sense to drop the onboard machine and welding shops. Who would use them? When manning decisions no longer focus around staffing a maintenance/repair crew, it becomes about filling out the watchbill. That’s how you get to the 40-person crew Holmes points out.

While Stefanus discussed the business side of the decision to outsource repair and maintenance, I think there’s a deeper logic to it that’s linked to our understanding of naval warfare: we can find technical solutions to human problems. If we can make it more technical, we should make it more technical.

The classic example is the implementation of radar onboard ships post-WWII. As more and more ships got radar, we expected to drive down collision rates. But what actually happened? Overall, collision rates did not fall and collision rates involving ships with at least one radar may have actually grown over time until recently! Largely what happened was that ships didn’t reduce speed as they used to–they had radar and could “see” things they never could “see” before. People found new ways to hit things with “radar-assisted collisions.”

I’m not saying radar is worthless or success in naval warfare doesn’t rely on using new technologies more effectively than your opponent. I am saying that innovations don’t neatly employ themselves and people may interact with a new toolset in ways we could never predict. As we add layers of complexity onto our systems, how much more capable are we really? Do submarines with the latest and greatest tracking systems using widescreen HD computer screens provide a demonstratively greater return than earlier generations which entailed hand plotting? Our assumption is yes, and we have committed ourselves in ways described by Stefanus and Holmes.

I wonder what the data would prove though? Sonar_US_Navy_Technician_Submarines_2nd_Class_Harlie_Williams_III_Los_Angeles_class_attack_submarine_USS



« Older Entries