

U.S. aircraft deliver relief supplies to the congested airport in
Port-au-Prince, Haiti in January 2010. UN Photo/Logan Abassi
During the earthquake tragedy in Haiti, American aid planes often circled Haiti’s sole open runway for hours. How is this possible for a nation on an island? Would rapid revival of the seaplane capabilities perfected by the United States decades ago, materially improve such situations? And could seaplane technology be a force multiplier aligned with advances in stealthy, electrically-powered “E-Planes”, some of which could be airborne almost indefinitely?
In an era which prizes cost-effectiveness, emphasis on the coastal and littoral, and the innovative use of smaller, lighter forces, perhaps seaplane usage merits a review. Today, other maritime nations, and nations with maritime aspirations – such as Russia, China, Japan, Germany and Canada – each have impressive seaplane or amphibious aircraft programs underway. Even Iran has displayed maneuvers with numerous small indigenous military seaplanes, albeit their capabilities are uncertain.
For humanitarian and political situations such as Haiti and Japan, seaplanes could be uniquely capable of delivering large amounts of aid to earthquake, hurricane and tsunami victims, as well as rescuing survivors. This would be “showing the flag” in very productive way, and most importantly, delivering help speedily and efficiently. For purely military considerations, seaplanes can address urgent needs in coastal warfare, port security, maritime patrol, cyber warfare and decentralized “swarm” defense and attack.

Martin P6M SeaMaster testing beaching gear in Baltimore, Maryland in 1958. Naval Institute photo archive
A seaplane future is not merely hypothetical; many components were tangibly produced by the late 1950s, and some of the planes were in early series production and operational.[1] The main flying components of that force were the Martin Seamaster strike aircraft, the Convair Tradewind transport and tanker, and the Convair Sea Dart fighter. In addition to Navy use, both the Air Force, and Coast Guard had admirable records employing seaplanes after WWII. Airplanes such as the Grumman Hu-16 Albatross were not only “tri-service” but sometimes “tri-phibian” with land, sea, and “frozen-sea” – i.e. ski – versions.
By the late 1960s however, these and other major U.S. seaplane programs were canceled, and the seaplane was sunk without a trace from U.S. Navy service. And so the era ended. But should it? Recent advances in computerized design and composite aircraft construction, and discussions of rising sea levels, again pose the question – is there room in U.S. military and civilian doctrine and budget for a small but effective force of multi-role, long-range seaplanes?
Seaplanes, “E-planes”, and submarines may in fact be powerful cross-multipliers of force. The modern submarine’s almost unlimited capability for electrical generation and water electrolysis could provide indefinite fuel for stealth electrical or fuel cell engines of manned or unmanned sea planes and drones. Similarly, high-persistence sea planes could be the disposable, semi-autonomous eyes, ears, and delivery/retrieval platforms of submarines submerged many miles away. Perhaps most importantly, seaplanes could augment the recent increased national emphasis on cyber defense. Standing patrols would help address not just domestic cyber threats per-se, but the entire spectrum of offshore cyber, radio, electronic and electromagnetic threats. And they could ensure that such defense is not merely optimized for the Navy’s own networks and systems – vital as this is – but that it can efficiently protect American civilian assets with an effective deterrence and response – keeping these electronic and tangible “rogue waves” far from our shorelines.

Japanese ShinMaywa US-2 seaplane used for air-sea rescue. Image courtesy Wikipedia/Toshiro Aoki
In hindsight, the incremental costs and risks of a re-invigorated seaplane program can be expected to be a small fraction of the $40 billion spent on the V-22, with benefits and aircraft survivability equal or greater. And – as a counterpoint to the US/EU tanker acquisition spat – a American buy of a small quantity of say, ShinMaywa US-2s or Bombardier 415s may aid inter-country collaboration with our important allies. Perhaps a low-cost, high-impact, rapidly-effective plan could include such a buy until the United States’ own seaplane capability again “ramps up”.
We have spent hundreds of billions over the last few years guarding our vital sea lanes. We now need a judicious, cost-effective strategy for the Navy to help protect our “E lanes” – including not only tangible military action over the oceans, but domestic cyber assets, radio-frequency and electromagnetic activities. Hopefully, the next humanitarian crisis or military challenge will be aided both literally and littorally by seaplane technologies which are not “if only we still had” but rather “already here and available”.
[1] Trimble, Wiliam F. Attack from the Sea – A History of the U.S. Navy’s Seaplane Striking Force. Annapolis, Maryland: Naval Institute Press, 2005.